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A constant-magnetization ensemble is introduced in order to study classical, 
anisotropic Heisenberg systems. Existence, uniform convergence, and 
convexity properties are proved for an appropriate thermodynamic potential. 
The thermodynamic equivalence of this ensemble with the more common 
canonical ensemble is also established. In a subsequent paper, this formulation 
is used to obtain an exact statistical mechanical solution of classical 
Heisenberg systems with long-range Kac interactions. 
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1. I N T R O D U C T I O N  

This  p a p e r  is the first o f  two  ar t ic les  dea l ing  wi th  the  classical ,  a n i s o t r o p i c  

H e i s e n b e r g  mode l .  T h e  bas ic  ob jec t ive  o f  the  p r e sen t  w o r k  is to m o t i v a t e  a n d  
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define a constant-magnetization ensemble, and to establish its equivalence 
with the canonical ensemble. The constant-magnetization ensemble is a 
natural one to use in discussing Heisenberg systems with long-range Kac 
interactions. An exact statistical mechanical treatment of  such systems is the 
focus of the second paper of this series. (x) Some of  the thermodynamic results 
of  that analysis, without the mathematical details, have already been com- 
piled elsewhere3 2~ In particular, the effect of  anisotropy on the Curie-Weiss- 
type transition has been established. 

In Section 2, the classical Heisenberg model is reviewed and the constant- 
magnetization ensemble is defined and compared with the canonical ensemble. 
Section 3 contains a discussion of  the relevant free energy density for the 
constant-magnetization ensemble. Existence, uniform convergence, con- 
vexity, and continuity properties are established for this constant-magnetiza- 
tion free energy density in the thermodynamic limit. A proof  of the equiv- 
alence of the constant-magnetization and canonical ensembles constitutes 
Section 4. 

2. C L A S S I C A L  H E I S E N B E R G  S Y S T E M S  

The classical Heisenberg model 4 is a v-dimensional lattice of N spin sites. 
To the kth site there is associated a classical spin vector s~ (k = 1 .... , N) 
with components (sx.k, su.k, sz.k). The Hamiltonian for a Heisenberg spin 
system can be written as 

= ( 1 )  

.~,v (s~ is the contribution to the Hamiltonian due to anistropic spin-spin 
interactions, 

N 

Jg(us) := -- ~ E E J,.k~s,.ks,,~ (2) 
i ,=x,y,z k r 

3f~ u) is the contribution to the interaction of  the spins with an external 
magnetic field H = (H~, H,~, Hz), 

N 

j ( f~u )= - - / z  E tI,  E sl.k (3) 
i ~ x , y , z  kr=l  

The coefficients Jx,kz, J..k~, and J~,kt are coupling constants which depend 
only on the magnitude of the separation of  the two lattice sites k and I. The 
magnetic moment of  each spin is given by/z. The quantity s~ is taken to be a 

4 The classical Heisenberg model can be thought of as the infinite spin limit of the quantum 
mechanical Heisenberg model; see Ref. 3. 
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vector of  constant magnitude, ] sk i = 1. The choice of unit spin magnitude 
is not restrictive since the magnitude of  the spin can be absorbed into the 
coupling coefficients and the magnetic moment. 

2.1. The  Canonical  Ensemble  

The canonical partition function is defined by 

Q,(H,N)-= f ds~... J" dSNe -~'re'x (4) 

where each integration is over the total solid angle, .(2 -- 4rr steradians. The 
canonical (Helmholtz) free energy densityfc(H, N) is defined by 

Q~(H, N) .- exp[--flNf~(H, W)] (5) 

The canonical free energy density in the thermodynamic limit, fc(H), is 
defined by 

J~(H) = ,[imfo(n, N) (6) 

where the lattice becomes infinite in each of  its v dimensions. The equations 
of  state for Heisenberg spin systems are obtained from the detinition of  
Pc = (P ..... Pc.~, P~.~), the net spin per lattice site in the canonical ensemble, 

P~.i = --~-z ~f~(H)/~Hi (7) 

for i = x, y, z. The quantity/zOr is the canonical magnetization per lattice 
site. 

2.2. The Constant-Magnetization Ensemble 

We seek a meaningful ensemble for discussing classical systems which 
has the essential feature of allowing a treatment of long-range interactions by 
a Lebowitz-Penrose-type method3 4~ For a classical lluid or a lattice gas, 
this essential feature is the constancy of  the number of  particles, as associated 
with the canonical ensemble. A similar analysis can be carried out for a 
quantum lsing model 15J using a corresponding ensemble for which the net 
spin is constant. The Lebowitz-Penrose method involves a division of  the 
entire lattice into cells. The net spin is a useful variable because an estimate 
of the long-range intercell interactions is simply expressible in terms of the net 
spin of  each cell. This feature leads to a direct relationship between the total 
system's free energy density and the free energy densities of  the individual 
ceils. This, in turn, allows one to obtain useful upper and lower bounds, 
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which ultimately determine the free energy density completely. Furthermore, 
the fact that this ensemble is thermodynamically equivalent to the trusted 
canonical ensemble, makes the constant magnetization ensemble a practical 
tool. 

It appears then, that we need an ensemble for which the net spin vector, 
for the classical Heisenberg model, is fixed? A possible approach is to define 
a partition function in terms of an integral over all configurations of the 
system. A Dirac delta-function could be included in the integrand to pick out 
those configurations with a fixed value of the net spin. With such an approach, 
however, it is difficult to prove essential properties, such as the existence of 
an appropriate free energy density in the thermodynamic limit, convexity 
properties, and the like. Below, we define a "constant-magnetization" 
ensemble in such a way that the difficulties alluded to above are avoided. 

The net spin of a system, M = (M~, M,~, M~), is defined by 

N 

M i  ,: si,  (8) 
k = l  

for i -- x, y, z. That is, given any configuration of the system (a complete 
specification of the set of vectors [s~}), the net spin has a value M. Clearly, the 
total range of net spin values is such that 

IM [ ~< N (9) 

We introduce the smallness parameter dIN with the property 

0 <~ A / N <  1 (10) 

We dei]ne the constant-magnetization partition function for each value of M 
a s  

Q,+(M, A, N) -= f a  dst' "'" fa dsN' (exp --/~ ~ O(M', M, A) ( l la)  

where 

if  M, M+' M+ + for = x, y, z 
O(M', M, A) (l lb)  

otherwise 

The characteristic function O(M', M, A) restricts the domain of integration 
so that M~ ~ M~' ~< M~-~- A, My ~ My' <~ My q- A, and 

M ~ M ~ ' ~ M , + A .  

5 For the quantum Heisenberg model, R. B. Griffiths has introduced an ensemble for which 
the z component of the total magnetization is held fixed. Sce Ref. 6. 
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From (1 lb), we note the identity 

O(M~', M,/, Mz'; - I M, , I M~ , ,  i M~ i ; A) 

=:O(- - . -M~ ' ,Mu ' ,M~ ' ; IM~:I - -A , !MyI , IM~!;A)  (12) 

This expression together with the fact [see (2)] that .~s~ is unchanged under 
the transformation 

sx.k--~ --sx,~, k = 1 ..... N (13) 

implies that 

Q,,(-- ; M ~ . I , I M , ] , ]  M ~ ] ; A , N ) -  Q~,(IM~I - -AI , .M, j j , .  M s l ; A , N )  

(14) 

Equation (14) can apparently be generalized for any component or several 
components of M being negative. Thus, we only need to consider values of M 
which have nonnegative components. 

The free energy density in the constant-magnetization cnsemble is 
defined by 

Q,,~(M, A, N) ~ exp[--flNf,.(p, X, N)] (15a) 

where 

and 

O =-- M / N - -  (MxlN, My/N, Mz/N) (15b) 

x = A / N  (15c) 

We note thatf,~(p, X, N) defined by (1 la) and (15a) is a continuous function 
of p. A proof of this statement is given in Appendix A. From (14) and (15), 
we observe that fro(p, X, N) has the symmetry property 

f r o ( -  !p= I, i p .  : ,  [pz I ;x ,  N) :--f.,(I p~ : --x,  i p~ I, I p~ : ;x ,  N) (16) 

and similarly for any component or several components of p being negative. 
The thermodynamic limit of the free energy density is defined by 

)(;,(P, X) = lj_,m f,,(p, X, N) (17a) 

where p and X arc held fixed in the limiting process. We seek a free energy 
density which is independent of X, carrying the connotation that the interval 
A is negligible compared with the maximum net spin N. This is accomplished 
by investigatingf(p, X) in the limit as X ~ 0. We therefore define 

.f,,~(p) .-- limf,,(p, X) (175) 
X~O 
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where p is held fixed in the limiting process. Finally, the magnetic field 
H,,, = (H,,.~, H~.~,,H,, , .~) in the constant-magnetization ensemble is 
defined by 

tzltm,s --- ?f,,(O)/8p~ (18) 

where i = x, y, z. 

2.3. Relation Between Canonical and Constant-Magnetization 
Partit ion Functions 

In this section, we obtain a relation between the canonical and constant- 
magnetization partition functions. We first note the inequality 

~s) dsx' .-. f~  dsu' [exp(fl/xH �9 M')](exp _fl.C~}~v) O(M', M, A) 

>~ {exp[--fl/z(; H z  i + ' I1~, [ -.? ' It~ !) A]}[exp(fl/xH �9 M)] 

x j "  ds;' ... j "  ds,,,' (exp -- /3af~ ') O ( M ' ,  M ,  A)  

---- {exp[--fl/z(l H~ : + [ Hu , -~- . l fz  i) A]}[exp(fl/xH �9 M)] Qm(M,  A ,  N )  
(19) 

which holds for both algebraic signs of M~ and H~,  i - -  x ,  y ,  z. Similarly, 
with no restrictions on the algebraic signs of M~ and H~, i = x, y, z, 

J'~2 dsl' "'" fo  dsu' [exp(/3/zH . M')](exp --/3.~'~ ")) O(M', M, A) 

~< {exp[fl/x(] H~ i + ~ Hy [ + i l lz  ') A]}[exp(/3/zH �9 M)] Qm(M, A, N) 
(20) 

where (1 I) has been used. We now note that (4) can be written as 

Qc(H, N ) =  ~ ~ ~ .f~? ds 1' "'" . ~  ds,/  
Ms: M u Mz 

• [exp(/3/zH �9 M')](exp --/3-~! s)) O(M', M, A) (21) 

where the summations run over integral multiples of A such that 
- - (N -~- A) ~ M~ ~< N. Combining (19)-(21), we lind the inequality 

{exp[--fl/u.(i Hx'  -l- i H~j I -]- I H~ [) A]} ~ [exp(/3/xH �9 M)] Ore(M, A, N) 
M 

~-~ Q,(H, N) 

(cxp[/3/z(! H~ I i- i H~' q- I H~ ') A]} ~ (exp fl/xH - M) Q,,(M, A, N) 
M 

(22) 
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2.4. Conditions on the Coupling Coefficients 

We assume the coupling constants in (2) satisfy the following con- 
ditions: 

, vq-~l I Jc~a ~ Dz/rkt , rk, ,> 1 (23) 

for  i = x, y, z. Both Dz and q are finite positive constants. An interaction of  
this form is termed a power-law potential  by Fisher/7~ and is a stable poten-  
tial. Using (23), the following upper bound for i .y.g,4s~ [ can be established: 

where 

~/,(S) ] .... ,,, ] ~ Nwl (24a) 

w ,  == ~D 11 5  ~ -~- ( v 2 ~ / % ) ]  

3. PROPERTIES O F  T H E  FREE E N E R G Y  D E N S I T Y  6 

(24b) 

3.2. Basic Inequality 

Suppose the lattice is divided into two regions, 1 and II, such that  each 
lattice site is either in region I or region II. Region I contains N m sites with a 
net spin M m. We similarly define N m~ and MIm for  region II. We can then 
write 

N IIj -~- N ~II~ = N (27a) 

M t l l  -~" M ell) = M (27b) 

6 Portions of this section follow closely the work for a classical fluid contained in Ref. 7 

3.1. A Lower Bound for fro(p, ~, N) 

From (1 I), (15), and (24), we lind the inequality 

exp[--/3Nfi,,(p, X, N)I -<5 [exp(fiNw,)l f dst' "'" f dSN' O(M', M, A) 
~ g2 

-~. [exp(/3N%)] fo  dsz . . . .  f o  dSN' = (4rr) N exp(flNwl) 
(25) 

But (25) can be written as 

J;,,(p, x, N)  ~ --wl --  fl-t ln(4rr) (26) 

which establishes a finite lower bound for f~(p ,  X, N). 
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Note that the net spin M (I) can vary as the configuration (the specification of 
all the vectors sk contained in region I) of the spins in region I varies. The 
spin-spin Hamiltonian can be written as a sum of three terms, 

j d ( s )  .,/p (s) . .e/As) 
N :-= J #  N(1) - i -  ~'c N(I I )  -~- ~ 1 , I I  (28) 

where ~ , n  is the interaction of region-I spins with region-II spins. From (11) 
and (28), we obtain the inequality 

Qm(M, 2/I, N) ~/ [exp --fl(,~i,ll)max] fC2 dsl' "'" f.Q dsN' 

x (exp ., .(s) o .,,,(s} --fi:Sfum)(ex p --/.,o,~ N(II}) O(M', M, 2/1) (29) 

The term ('~'l,ll)rnux is an upper bound on ~,H �9 The interval length 2A is of 
interest for reasons which are explained below. The integrand on the right- 
hand side of (29) is the product of a factor for region I and one for region If. 
We can now treat region I and region II as separate systems. 

We note that if 

and 

then 

l a r ( l ) "  ~ / / ( I )  ' /1 M(0 ~ "** ~-"*x -r 

M (n) .~ M~ I')" ~ M(x n) @ /1 

(30a) 

(30b) 

�9 , ( % , )  + 
M (I )  - r "  , . - z  = Mx -~ Mx ~ M~ 4- 2A = : -t- A) q- A) 

(30c) 

and similarly for the y and z components of M. Since the integrand in (29) is 
everywhere nonnegative, we find the inequality 

[" d s / " - J  d s / ( e x p  (s) o o~(s)  --f}:CfNm)(exp 0(M',  M, 2A) �9 - - / o  ..7~ N(II)] 

~> Li e ds,' "'" j "  ds;m (exp o-~(s) ,  Mm, - - b ~ o v  . N(1) ) O(M (I)', A)] 

[ j  ... fo ds>,, (exp M"", 

= Q,n(M (1), A, N (I)) Qm(M (II), Zl, N (ll)) (31) 

where M {I} and M m} are chosen such that M m -!- M tm --=- M. The first 
inequality in (31) follows since the domain of M m' and M ~II}', expressed by 
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(30a) and (30b), is everywhere contained in the domain of M', as shown in 
(30c). Combining (29) and (31), we obtain 

Qm(M, 2/I, N) ~ e -e(~'"> .... Qn~(M (l), A, A ;(x)) Q,,(M Cm, A, N ~H)) (32) 

subject to (27a) and (27b). 
We now obtain an upper bound on i -~i.n i.  To accomplish this, we 

construct a "corridor" which contains all sites within a distance R of the 
boundary between regions 1 and i I. We place the following restriction on the 
number of sites N contained in the corridor: 

IV ~ CNI-CI,:~)R (33) 

wherc C is a finite positivc constant. This condition can be interpreted as a 
requirement that the area of the boundary between regions 1 and II (roughly 
N/R) is of the same order of magnitude as the area of the boundary of the 
system (roughly N1-Cz/~J). Now, divide ~ . u  into two terms, 

~)I,I[  =-= "~1.II -~ "~R (34) 

where Jd  R is the interaction of region-I spins with region-ll spins for those 
sites contained only in the corridor. ,- '~i contains all other interactions of 
region-I spins with region-ll spins. Then, by (24a) and (33), 

i d/~] ~-~ Nwl ~ CwlNZ-'I1/~)R (35) 

Since the interactions contained in ~ n  are between sites separated by at 
least a distance R, (2) and (23) give 

I "~:[.H '~ ~ 3DzN(~ R ~+q (36) 

Combining (34)-(36), we obtain 

i ;~1,1i ', ~ C)t.INI-(I"~)R %" 3(DIN(I)N(m/R ~+'~) (37) 

Inequality (32) can now be written as 

J~,,(O, 2A/N. N) ~ CwzRN -~/" -1- 3(DzN(I)N(m/NR "'q) 

i (N(O/N),['~(O (l), A/N (0, N (1)) 

,Nq~),N,: ((H) N(m) %- t / )J,,, 0 , A/N (m, (38a) 

where 

p == M/N (38b) 

~,(i~ = M(I)/N(I~ (38c) 

p(ll) =_ M(m/N(m (38d) 
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Inequali ty (38a) is valid if the conditions (27a) and (27b) are satistied. Equa-  
tion (27b) thus takes the form 

N m p  m q-- N{II}~ (11) : :  N p  (39) 

Clearly, if the lattice were divided into a finite number  of  regions ii, 
corr idors  could be constructed,  similar to the above,  so that  (38) and (39) 
could be generalized to 

N(P)N(,~ ) 
.f.,(p, ~A/N, N) ~ CwxRN -1'~ § 3D1 NR~. q 

p .2 q 

N(') N (')) (40) 
, N(m , p = l  

subject to the constraints  

N (~)--  N (41a) 
p = l  

t7 

N(~)p(~') = Np (41b) 

3.3. S e q u e n c e  for  t h e  T h e r m o d y n a m i c  L i m i t  

We define a sequence o f  lattices, for  the the rmodynamic  limit, similar 
to that  defined by Fisher. (7) The  initial term in the sequence consists o f  a 
(regular-linear,  square, cubic) lattice for  v = (1, 2, 3) with N o sites and a net 
spin M0 �9 The  kth lattice in the sequence consists o f  N~ lattice sites with a net 
spin Mk �9 The (k --  1)th lattice is defined in terms o f  the kth by 

Nk+l = 2~NI~ (42a) 

Mk+l = 2~Mk (42b) 

Each lattice in the sequence is to be (regular-linear, square, cubic) for 
v = (1, 2, 3). The sequence for  the corr idor  half-width Rk is defined by 

R~ ~,1,,~ (43a) = =  ,',Xklu k 

where 

c~ -- [2-'1/~(~+q)] k ~o, 0 < ~o < 1 (43b) 

We note that  in the the rmodynamic  limit, defined by sequence (42), 

lim N~ = oo (44a) 
k ~ o  

lim Mik  i - -  ~o (44b) 
k->:o 
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where i = x, y, z, while the net spin per site 0 remains fixed, i.e., 

M~/Nk  = Mo/No ~ p (44c) 

in taking the thermodynamic  limit, X is held fixed. Since Ak = x N ~ ,  the 
quanti ty A~ must approach infinity as Nk �9 

3.4. Existence of fro(o, X) 

The method for proving the existence of./~,(~, X) is completely analogous 
to that given by Fisher (7~ for proving the existence o f  the free energy density 
of  a fluid. We therefore only outline the proof .  Using (40) and (41) and the 
sequence defined by (42), (43a), and (43b), we lind 

2 v 

./i,,(O, X, N~:-:z) ~ w.,_O k -,- w:~0z k +- (I /U) ~ fi~(t Q(~), X, Nt:) (45) 

subject to 

where 

0 and 0~ are defined by 

2 v 

( I /T)  ~. 0 (~) .-  0 (46) 
p -1 

w2 = ..1, Cwl~o 

wa 3D1(2" i ,+q ,~/~ . . . .  l ) j% N O 

(47a) 

(47b) 

it is expedient to choose 

p(~" = t~ ("), p, q ~- 1, 2 ..... 2" (50) 

Such a choice [see (46)] implies 

p ~  = p, p - - - -  I . . . .  , 2  ~ ( 51 )  

0 - 2 -q'')(~:q) (48a) 

01 ~- 1/2~0 v~q (48b) 

To  obtain (45), we used the correspondence ~--~ 2 ~. This correspondence 
implies that  

X = 2~Ak/Nk+z = Ak/N~: (49) 

This, in turn, assures that in (40) the function f~  contains the same X para- 
meter on both sides of  the inequality. 

Since (45) is valid for any choice of  {0 (p~} satisfying the constraint (46), 
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Therefore,  (45) becomes 

f,,(O, X, Nk+l) ~ w20 ~ -'r- wa0l 1~ + J',,dO, X, N~) (52) 

We now introduce the auxiliary function q~(p), defined by 

k- 1 k - i  

--qk(P) : J~(P, X, N~) - -  wz ~ 0 z --- wz ~ Ox ~ (53) 
l=O l=O 

Inequalities (52) and (53) imply that  for  tixed p, qk(o) is a nondecreasing 
sequence, i.e., 

q~+z >~ ql~ (54) 

Using (54) and  the fact  that  qk(P) is bounded above  [see (26) and  (53)], we 
conclude that  

q(p) = l !m q~(p) 

exists5 But if  q(p) exists, then by (53), 

J;(P, z) = ~!Inf~(v, x, U~) 

also exists. 

(55) 

(56) 

3.5. Convexity of f.(p, X) 

We take the limit o f  (45) as k -~ oo to obtain  

2 v 

./;~(0, X) =- (1/2") ~ f,~(0 (~), X) (57) 
p=l 

subject to (46). This  is jus t  the condit ion that  fro(p, X) be a convex funct ion o f  
the three variables p~,  pu,  and  p~. H a r d y  et aL c'a) point  out  that  convexity o f  
a funct ion of  several variables asserts more  than convexity with respect to 
each variable separately.  Convexi ty  of  a function o f  several variables implies 
that  any chord drawn between two points  on a surface lies above the surface. 

3.6. Continuity of f.(p, X) 

We show thatf,,(O, X) is bounded  above for  any X, 0 < X ~ l. F rom (11) 
and (24), we find 

z,  N) ~ e -~''~ S~ Jsl' "" j" dsN' O(M', M,/1) (58) Q,,(M, 

7 Existence follows from the theorem: If qa. is a nondecreasing sequence, then either (i) qk 
tends to a limit as k tends to ~,  or (ii) qk ---* oo. See, for example, Ref. 8, p. 137. 
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Suppose M is such that  the cube defined by Ms ~< M~' ~ Mi § A, i = x, y, z, 
is enth'ely hlterior to the sphere in M-space  defined by [ M i = N. Choose  a 
configuration {s~.} of  the system such that  

M~' --  M i - i -  ~-A (59) 

for  i =-- x, y, z. Now,  included in the nonzero  integrand in (58) are configura- 
tions such that  

s~'.k -- (A/2N) ~ s~,k -~ s~k -? (A/2N) (60) 

for  all k (k = I,..., N),  where i == x, y, z. 
Focus  at tention on any site, say site k. The constraint  (60) restricts the 

solid angle over  which sk' can vary. Call this restricted domain  oJk. In 
Appendix  B, we prove the inequality 

f dsk' >~ (A/ZN) z :-: (X/2) 2 (61) 
oJ k 

This inequality is used in (58) to obtain a lower bound for  the part i t ion 
function 

Q,~(M, A, N) ~ e-BN~'(X/2)2~" (62) 

Using (15), we find 

f-,(to, X, N)  ~< wz - - /3-z2  In(x/2) (63) 

Fo r  0 < X ~ 1, (63) represents an upper  bound  for  fro(to, X, N) which is 
independent  o f  N. But by (57), fro(to, X) is a convex function o f  to. Since, 
f,,(to, X) is bounded  above  [see (63)], we conclude that  fro(to, X) is a cont inuous 
function o f  to.8 

3.7. Un i form Convergence of fm(to, • Nk) to fro(to, X) 

We know f rom Section 3.6 thatf,,(to, X) is a cont inuous function of  to and 
therefore q(to), defined by (53), is also a cont inuous  function o f  to. Fur ther-  
more,  f,(t~, X, Nk) is a cont inuous  function of  to and therefore qk(P) is also a 
cont inuous  funct ion of  to. By (54), qk is a nondecreasing sequence. Therefore,  
by Dini 's  t h e o r e m )  qk(to) converges uniformly to q(to), 0 ~< J 0 I ~< t5 for any 

t~<]. 
8 This is a generalization of Theorem I 11 of Ref. 9. See also Ref. 10. 
9 Dini's theorem: Suppose that the functions q~(to) and q(p) are continuous on the bounded 

closed set S. Suppose also that the sequence is monotonic for each to in S, and that 
lim~_.,,~ qk(o) = q(to) on S. Then l im,~ qk(to) = q(to) uniformly on S. See, for example, 
Ref. 11, p. 121. 

8zz/6/z/3-6 
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But if qk(P) converges uniformly to q(~), thenf~(~, X, N~.) must converge 
uniformly tof , (p ,  X), 0 ~< I P I ~< t 5 < 1. 

3.8. The Existence of fro(P) 

We first show thatf~(p) is bounded from above. To accomplish this, we 
define the quantity g(M/N, A/N, N), 

exp[--[3Ug(M/N, A/N, N)] = j "  dsz' "" f a  dsN' O(M', M, A) (64) 

In Section 3.3, we defined a sequence (with index k) for the thermodynamic 
limit. We now define a sequence for X ~ 0 (with index 1). If Xt is a term in the 
sequence, then the (l + 1)th term is defined by 

Xt+l = �89 (65a) 

o r  

X~ = (~.)z X0 (65b) 

where Xo is the first term in the sequence, chosen such that 0 < Xo ~ 1. The 
quantities g and A then have two indices in their arguments, i.e., 

g - g(P, X~, Nk) (66) 

and 

A~.t -- (20 k (�89 NoXo (67) 

where (42a) and (65b) have been used. We now examine two adjacent terms 
in the I sequence, to obtain 

exp [--flNkg ( Mk Ak.t Nk ' Nk ,N~)] 

[--/3Nkg (Mk + j Ak.,~-z A,-.,-1 (68) 

where the summation is over the eight vectors 

J == (Jl ,J2 ,J3), Jl ,J2 ,J3 - 0 ,  1 (69) 

The summation in (68) results from dividing the domain of integration 
[see (64)] in M-space (which is over a cube of edge length Aka) into eight 
cubes, each of edge length IA A~ z+z 2 k , l  ~ "  . " 

But g(p, X, N) is just the constant-magnetization free energy density for 
a system with no interactions. We have shown in Section 3.7 that the constant- 
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magnetization free energy density converges uniformly to the free energy 
density in the thermodynamic limit, i.e., g(to, X, Nk) converges uniformly to 

g(P, X) = lira g(p, X, N~.) (70) 

Therefore, we can write 

g(P, Xz, Nk) = g(P, Xz) -1- ~(P, Xz, N,) (71) 

The uniform convergence guarantees that there is a ~,,  defined by 

max 13(p, X~, Nk)l = 3~ (72a) 

for finite/, such that 

lira ~k = 0 (72b) 
k -) ~o 

We can therefore write (68) as 

exp[--flN~(l~, Xt, Ng)] <~ ~ {exp[--flN,~g(p + JX~+I, X~+z)]} exp(flN~3k) 
I (73) 

But each term in this sum is positive, and therefore 

exp[--flN~(p, Xz, N~)] ~< 8[exp(flN~3k)] exp[--flN~gmfni(P + JX,+z, Xv~0] 
(74) 

Further, g(ta, X) must have the same convexity and symmetry properties as 
proved for the free energy density for a system with interactions. The geometry 
of the situation (convexity and symmetry properties) then implies that for 
each component of p positive, the minimum with respect to j in (74) occurs 
when j = (0, 0, 0). That is, the minimum occurs at the value of t~ + Jxz-x 
closest to the origin (this statement is proved in Appendix C). Therefore, (74) 
can be written as 

exp[--flNkg(p, X~, Nk)] ~ 8[exp(flNk~)] exp[--flNkg(p, X~+z)] 

o r  

--(flN~) -z In 8 -- 8k -F g(p, X~,l) < g(P, Xz, N~) (75) 

Taking the thermodynamic limit and using (72b), we find 

g(P, X~+I) ~< g(P, X~) (76) 

From (68), we can also obtain the inequality 

exp[--flNk g(p, X~+I, Nk)] ~< exp[--fiN~ g(p, X~, N~)] (77) 
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which implies, in the thermodynamic limit, that 

g(P, Xz+,) >~ g(P, Xt) (78) 

Inequalities (76) and (78) together imply 

g(0, X~) = g(o, X~-~) (79) 

But (79) must be true for any terms in the sequence as X -+ 0. Proceeding to  

the limit l -+  0% we then obtain 

lim g(o, Xz) = g(o) = g(o, Xo) (80) 

But (63) represents a bound on g(o, Xo), and thus 

g(o, Xo) <~ --[3-~2 In(x0/2) (81) 

The choice of Xo was arbitrary, so we can choose it to be a nonzero value. 
From (15a), (58), (64), and (81), it follows that 

L,,(o, x~) ~ wx + g(o, x~) 

</ - -  2,8-' In(xo/2 ) (82a) -~ W l 

Therefore, 

.l;~ :-= l im];, , (o, x,) 

Kenneth Millard and Harvey S. Left 

o r  

Qm(M, At,  N~) >~ Qm(M, Al.,.l , Nk) 

J~,(P, X~+x, Nk) >~ fro(P, X~, Nk) (84) 

Taking the thermodynamic limit of (84), we obtain 

f~.(~, Xl+l) ~ f,,,(P, X,) (85) 

or/,~(p, X~) is an increasing sequence in l. But we have already shown that 
f,~(P, X0 is bounded above [see (82a)]. We therefore conclude, using the 
aforementioned theorem (see footnote 7), thatf,,(p) exists, 0 ~ [ p I :~ t 3 < 1. 

is bounded above for 0 ~ i P i ~ /5  < 1. 
We now prove thatf,,(p, X~) is an increasing sequence in 1. To do this, we 

obtain an inequality involving two adjacent terms in the l sequence. From 
(11), (15), and (65), we obtain 

(83) 

(82b) 
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3.9. Convexity of f . (p)  

[nequality (57) can be written as 

2 u 

f,,,(O, Xz) ~ (l /T) ~ f.,(0 ~'), X~) 
p = /  

Taking the limit as l ~ ~ ,  we lind 

2 u 

s -~'t (1/2") 2 .L,(O (')) 
P = I  

where 

(86) 

(87a) 

2 u 

(I/T) ~ 0(0)= p (87b) 

which is just the condition thatfn(p) be a convex function <gJ of O. 

3.10. Continuity of fro(p) 

Sincerer(p) is a convex function bounded from above, we conclude that 
f,,(o) is a continuous function (see footnote 8) of O. 

3.11. Uniform Convergence of f,,(p, Xi) to fro(P) 

We have shown that f~(p, X~) is a nondecreasing sequence. Further, 
fro(p, X~) is a continuous function of o. Also, .fn(o, X,) converges to fro(P), 
which is a continuous function of o. Therefore, by Dini's theorem (see 
footnote 9) the convergence is uniform for 0 :(- i P i ~< fi < 1. 

4. E Q U I V A L E N C E  OF C A N O N I C A L  A N D  
CO N S T A N T - H A G  N E T I Z A T I O  N ENSEMBLES 

We detine the quantity E(p, X, N~) by 

f(o,  X, N,:) = f,~(p, X) + E(p, X, Nk) (88) 

Since f,,(o, X, Nt:) converges uniformly to J~,(O, X) (Section 3.7), there exists 
the quantity ek, 

e~ = max ~e(O, ~', Nk); (89a) 

with the property 

lira ck ~ 0 (89b) 



150 Kenneth Mi l lard and Harvey S. Left 

Inequality (22) can be written as 

exp[--/3Nkf~(H, Nk)] ~ exp[fltz(I H~ ] + I H u i + I Hz  l) A~ 

• ~ [exp(fl/zM �9 n)]  e x p [ - f l N j m ( p ,  X, Nk)] 
M 

~< {exp[/3p.(I H:~ I + I H~, ] q-- [Hz I) Ak]}[(2/X) + 1] 3 

• max {[exp(/3tzNkt~ �9 H)][exp - - f lNkf , . (p ,  X, Nk)]} 

<~ {exp[fi/z(I Hx:, + I H,  [ -q- I H, l) Ak]} 

• [exp(flNk%)][(2/X) + 1] a 

• max {[exp(/3/zNkt~ �9 H)][exp - - f lNk f~(p ,  X)]} (90) 

since there are [(2/X ) + 1] 3 terms in the summation on p. (It is assumed 
that the maximum is attained in the region 0 ~ I ~ I ~< fi < 1.) The latter 
inequality in (90) can be written as 

fc(H, Nk) 

>~ --/z(I Hx i + ! H~ I + I H~ '.)(Ak/mk) --  E~ --  (3/3-Z/Nk) ln[(2/X ) + 1] 

- ([3-~/Nk) in ~ a x  {[exp(fl/zNkP ' H)][exp --[3mkJ~(p, X)]} (91) 

The inequality is only weakened if the maximum is taken with respect to any 
to. Since the logarithm is a monotonic function, (91) can be written as 

f~(H, N~) >~ -/z([ H~ [ + [ m~ [ + ' n~ [) X --  Ek --  (3fl-~/Nk) ln[(2/X) + 1] 

+ rain [f~(p,  X) - -  /zp �9 H]  (92) 
I ~ l ~ #  

Taking the thermodynamic limit of (92), and reintroducing the secondary 
"l sequence," we obtain 

f~(H) >/ --/z(] H~[ + [ Hu[ q- i It~ l) Xz ~- i m i n  [f~(o, X~) - -  t-~O " H] (93) 

Now,f,,,(p, X3 converges uniformly tof~(o) (Section 3.11). We can, therefore, 
write 

f,~(P, Xz) -~ f,,(P) + e'(0, X~) (94) 

Let 

and note that 

e~' = max I E'(0, X~)[ (95a) 

lira Ez' : 0 (95b) 
l >co 
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Using (94) and (95a) in (93), we obtain 

fc(H) ~ --/z(l H~ + I HI/ :l -~ I H~ ) Xt - -  E~' -~- min [.f,,(to) - -  /zp �9 H] 
I i i P l ~  

(96) 

Now, taking the limit as l---~ ov in (96), we find 

f~(H) ~ min [f~(~) --  /zto �9 H] (97) 

From (4) and (20), we can also obtain the inequality, valid for  any to, 

exp -/3N~.f~(H, Nk) ~ [exp --fl/L(i H~ I ~ 1t~i -+- :H~ l ) ~ ~ ] 

• [exp(fl/zNk0 �9 H)] exp --flNkf,~(O, X, N , )  

o r  

(98) 

L ( H ,  N~) ~</z(I Hx ] + i H ~  I + I I1~ l) X - t z P  " H q- f , , , (p ,  X, Nk) (99) 

Taking the thermodynamic  limit, we find 

J~(H) ~ /z ( ]  Hxi  -- I Hu ] -1- I H~ I) X, - - /zp  �9 H q-/ ; , (p,  X~) (100) 

Finally, taking the limit as l--+ ~ ,  

f~(H) < --/~p �9 H- i -  J~(o) (I00 

This inequality is valid for  any p. In particular,  it is valid for that value o f  @ 
that minimizes the right-hand side o f  (I01). That  is, 

fc(H) ~ ,min=< [./m(p) - -  ~.p " H I  (102) 

Combining (97) and (102), we obtain 

./"c(H) -- rain [J~,,(o) - -  p.p �9 H] (103) 

We assume that [fro(to) - - / z p .  H] can be minimized by differentiation. 
This is a reasonable assumption since f , ( p )  is a convex function o f  p. The 
value o f  p at which the minimum occurs is called P0 =-- (Px.0, P~.0,9--.o)- The 
conditions for the minimum are 

~ H i -  ~f'"(P) 
~Pi ~-po (104) 

for i = x, y, z. Sincef, ,(0) [and therefore fro(to) - - /~0-  H] is a convex function 
o f  o, if a solution to (104) exists, it must correspond to a minimum. By using 
(19), this is just 

H, - -  I[, , . i  (105) 
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for i = x, y, z. Equation (103) can now be written as 

J;(H) = f~(Po) -- ~ 0r ~f,,,(O__~) p=po = f,~(Po) -- p.H �9 Po (106) 
~: ~,~.~ ~Pi 

But by (7), (19), and (106), 

p~., . . . . . .  ix-' ~f,(H)/~H, -= P,.o (107) 

for i = x, y, z. Therefore, by (105)-(107), the ensembles are thermo- 
dynamically equivalent. 

A P P E N D I X  A. P R O O F  T H A T  fro(P, X, N)  IS A 
C O N T I N U O U S  F U N C T I O N  OF p 

The proof consists in showing that Qm(M, zl, N) is a continuous function 
of M for finite N and requires that ] Jg, v ~s~ I be bounded above. For the class 
of interactions considered here, (24) constitutes such a bound and is used in 
the proof. 
Given E > 0, choose 

= ~(47r) z-u Ed-2e -~ (A.I) 

The quantity I Q(M, A, N) -- Q(M',  A, N)I can then be bounded above for 
] M -- M' I ~< c3 in the following way. From (1 la) and (24), we find 

I Q,,~(M, A, N)  --  Qm(M', A, N)! 

<~ e oNw' fads ; '  ... f d s ~ i  O(M", M, A) -- O(M", M', A)I (A.2) 

The integrand in (A. 2) restricts the domain of integration to those regions for 
which the nonzero portions of both characteristic functions do not overlap. 
Denote these regions by ~z(M", M, A) and ~z(M", M', A), respectively. 
Each of these regions is a cube of volume Aa in M-space. The integrand in 
(A.2) is nonzero within the region. 

"~3 = ~ 1  U ~ 2  - -  -~1 ~ ~2 (A.3) 

- ~  itself is contained within a region consisting of six parallelapipeds 
(A x A • 8), each of which has a face (A • A) parallel with a face of 
the original two cubes of volume A3. Denote these regions by 2A~r 
i -- I, 2,..., 6. The integral in (A.2) can now be written as 

6 

r  ,.~t~ 
(A.4) 
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The latter six terms are all the same and can be evaluated using the trans- 
formation 

S l ,  s~' . . . . .  s~;,,--> M",  s,;' . . . . .  s~, ( A . 5 )  

The Jacobian of this transformation is unity and thus 

j" dst' ... j> (,)_= j dM" j" Js ; . . -f  Js' , 
"~i ~ i '  

<~ (47r) ~1  A=3 (A.6) 

The region 92;' represents a restricted domain of  integration whose details are 
not important here. In the last step, the inequality is weakened by removing 
this restriction. Combining (A.2), (A.4), and (A.6), we obtain 

I Q,,,(M, A, N) -- Qm(M', A, N)i :~ ee"~='6(47r) u-x A23 -- E (A.7) 

which completes the proof. 

A P P E N D I X  B. PROOF OF I N E Q U A L I T Y  (61) 

Inequality (61) specifies a cube of edge-length X (0 < X ~< 1), whose 
center falls on the surface of a sphere of radius unity. The cube is oriented 
such that its edges are parallel to the x, y, and z axes. We wish to obtain a 
lower bound on the element of solid angle oJ corresponding to the spherical 
surface area determined by the intersection of the sphere of unit radius and 
the cube. 

We first construct a cube of  edge length X/2, whose center coincides with 
the center of a cube with edge length X. Then, for any orientation of  the small 
cube, the cube of edge length X/2 is everywhere interior to the cube of the 
edge length X. Orient the cube of length X/2 such that two faces are perpen- 
dicular to the radius vector from the sphere's center to the cube's center. 

The element of  solid angle aJ is then bounded below by the element of 
solid angle co' corresponding to the intersection of  the unit sphere and cube 
of edge length X/2, oriented as described above. That is, 

fo ds > f~,ds (B.I) 

where s is unit radius vector (outward) for the sphere. The right-hand side of 
(1), which is the area on the unit sphere defined by the intersection, is bounded 
below by the area of one face of the smaller cube. (This is true since 
0 < X -G< 1). Therefore, 

I~ ds >~ (X/2) 2 (B.2) 
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Let f(x,  y, z) be a convex function having the symmet ry  

f ( x ,  y,  z) ~- f(7~.,c, 7~.,Y, y~z) (C.1) 

7; =: - - I  for i =  x , y , z .  

J • (J,  ,J2 ,J.~) (C.2) 

j i  ' O, 1 for i --  x,  y, z 

to = (Xo, Yo, Zo) (C.3) 

Then 

re.in f ( r  o + aj) ~ f(r0) ----- f ( x o ,  Yo, zo) 
I 

if  xo,  Yo, Zo, and a are real and positive. 

Proofi I f  f (r) is a convex function, then 

f(,~rl -~- fir,,) ~ a f ( r l )  q- fir(r2) 

where ,~ + fl = 1 and a ~ 0 and fl ~ 0. Choose 

and 

X l  ~ - - X 2  , Y l  = Y2, z1 zz  z2 

Then,  by the symmet ry  condit ion (C.l) ,  we find 

f (0 ,  y, z) ~ f ( x ,  y, z) 

Now, in (C.5), let x2 = 0, Yl --~ Y~, and zx ---- z2, to obtain 

f(~,x, y, z) ~ ~f(x, y, z) + ~f(0, y, z) 

Combin ing  (C.7) and (C.8), we find 

f( ,~x, y, z) ~ f ( x ,  y, z) 

(c.4) 

(c.5) 

(C.6a) 

(C.6b) 

(c.7) 

(c.8) 

(c.9) 
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for any 0 :~ c~ ~ 1. Now, choose 

O ~:~ x = xo + a, Y : Yo, 

and 

c,x - x0 ) 0 

For  this choice, (C.9) yields 
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z = Zo (C. 10a) 

(C. 10b) 

f (Xo , Yo, zo) -~ f (Xo -7 a, Yo , zo) (C.1 la) 

We have thus proved our  statement for one o f  the seven possibilities in (C.2). 
In a similar manner,  we can prove 

f ( X o ,  Yo, zo) ~ f ( x o ,  Yo --  a, Zo) (C. 11 b) 

and 

f ( x o ,  Yo, Zo) ~ f ( x 0 ,  Y0, Zo -~- a). (C. 1 1 c) 

F rom (C.1 la) - (C. l  lc), it follows that 

f ( x o  + a, Yo, zo) <~ f ( x o  + a, Yo + a, z0) (C.I 2a) 

f ( x o  + a, Yo, zo) <~f(xo + a, Yo, Zo + a) (C.12b) 

f ( x o  ,Yo + a, Zo) ~ f ( X o  ,Y0 + a, z0 + a) (C.12c) 

f (xo + a, Yo -i- a, Zo) <~ f (xo + a, Yo + a, zo -',- a) (C. 12d) 

Inequalities (C.1 la)- (C. l  ld) prove the desired statement. 
Note that the symmetry condit ion (C.1) is related to (16) by a simple 

translation. 
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